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Abstract

Optimization of the zeta potential distributions at the walls for minimal dispersion in an electroosmotic microchannel is performed
based on the variational approach. In the present problem, the governing equations are the steady flow equations and the unsteady mass
transport equation. Based on the calculus of variations and the method of Lagrange multiplier, the Euler–Lagrange equations are
derived in the form of coupled partial differential equations. The coupled equations of the state variables and the adjoint variables
are solved by the FDM method iteratively. The original and adjoint flow equations are reformulated using the streamfunction-vorticity
method to eliminate the pressure and the adjoint pressure in the equations. It is found that the dispersion can be reduced drastically by
controlling the zeta potentials at the channel walls in an optimal way. The results of the optimal solutions are expected to provide an
insight for the design of zeta potential control systems. The methodology used in this work may find various applications in the area
of the micro-total-analysis-system (lTAS).
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Multifunctional microchannel systems like lab-on-a-
chip devices should request long channel length. A channel
about 20 cm in length is required for an electrically driven
separation process [1]. Therefore, turns are integrated into
microchannel systems for miniaturizing chips. On the other
hand, electroosmotic flows (EOFs) have been regarded as
an efficient tool for transporting microfluids. Unfortu-
nately, however, the turns of electroosmotic microchannels
produce unwanted dispersion induced by variations in the
strength of electric field and in the traveling distance (the
so-called race track effect). These effects drastically reduce
the separation efficiency [1].

There have been many efforts for minimizing the dis-
persion induced by the turns. Some of them [2–8] are
through the modification of channel geometry. Especially,
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Griffiths and Nilson [7] and Molho et al. [8] studied on the
optimal geometrical shape of the turn for minimizing dis-
persion. On the other hand, there are several methods to
control dispersion without changing the geometry or the
configuration of turns. One of them is to control zeta
potential at the wall. In EOF systems, flow patterns are
determined by the zeta potential distributions at the walls
and the applied electric field. By experiments, it has been
reported that the dispersion can be decreased by control-
ling the zeta potential values at the walls and that 2D
numerical analysis well interprets the experimental results
[9,10]. In addition, Qiao and Aluru [11] proposed the opti-
mal control condition of the zeta potential at the inside
wall of a turn in nanochannel systems based on numerical
results. Woo [12] also investigated the optimal conditions
of the zeta potential values at the inside and outside walls
of a turn.

In the works of Qiao and Aluru [11] and Woo [12], only
very restricted problems for the zeta potential control are
considered. They determined the optimal values of the
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Fig. 1. Schematic of a U-turn microchannel.
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constant zeta potential at certain parts of the walls. In
other words, they considered one or two parameter sys-
tems. Consequently, the jump of zeta potential value is
allowed. According to Woo [12], it is reported that the step
change of the zeta potential value is a possible reason of
inducing dispersion. Thus, it is believed that previous
efforts for determining optimal conditions of the zeta
potential distributions are not sufficient. Therefore, using
a systematic approach of optimization, we seek the optimal
conditions for the control of zeta potential distributions at
inner and outer walls. We define an optimization problem
for the control of zeta potential distributions to minimize
dispersion and introduce an objective function based on
the concentration of the analyte. In order to solve the opti-
mization problem with the equality constraints given by the
governing partial differential equations (PDEs) – the steady
flow equations and the unsteady transport equation, the
variational method is used. Based on the calculus of varia-
tions and the method of Lagrange multiplier, we derive an
optimality system of equations, the so-called Euler–
Lagrange equations in the form of coupled partial differen-
tial equations. We solve the system of equations using the
finite-difference scheme with iteration and relaxation.

Mathematically, the optimization problem in this work
is an optimal boundary control problem for a distributed
parameter system described by PDEs. For the studies in
that area, the calculus of variations plays the most impor-
tant role as a general technique for optimization in func-
tion spaces [13,14]. It is also in common use for the
optimization of flow control [15]. Most of researches for
flow control considered only the governing equations of
flow (the Navier–Stokes equation and the continuity equa-
tion). In steady [16] or unsteady [17–23] flow systems, the
researchers solved the optimal flow control problems for
minimal stress or vortex and so forth. In a magnetohydro-
dynamics (MHD) system, the flow field and the magnetic
field are coupled. Therefore, the researchers [24–26] inves-
tigated the optimization problems with the governing equa-
tions coupled by the flow field and the magnetic field. Also,
Collis et al. [27] studied on the optimal flow control prob-
lem coupled by the flow and the temperature.

In this work, we investigate a new type problem of opti-
mal boundary control problem with the steady flow equa-
tions and the unsteady transport equation. The flow field is
governed by the steady Stokes equation and the continuity
equation. However, the concentration is governed by the
unsteady transport equation.

From the results of the optimization problem, we can
determine the optimal zeta potential distributions at the
walls. The optimal solutions are expected to provide valu-
able information of the optimal control for minimal disper-
sion and an insight for the design of zeta potential control
systems. Since the optimal flow control problems coupled
with the transport equation are important in the micro-
total-analysis-systems (lTAS) [28], the methodology pro-
posed in this work may be used as a useful tool to solve
such optimal boundary control problems.
2. Problem statement

2.1. Governing equations in an electroosmotic microchannel

We are interested in the control of the zeta potential dis-
tributions at the walls for minimization of dispersion in an
electroosmotic microchannel. In the present work, we con-
sider a two-dimensional microchannel. Rigorous speaking,
the 2D approximation is valid only when the microchannel
depth is much large than the width. Nevertheless, the 2D
results are still expected to provide an insight also for real-
istic situations. In addition, the methodology adopted in
this work can be easily extended to the more realistic 3D
microchannels.

We assume that the microchannel system has a constant
width as shown in Fig. 1. W � and L� are the channel width
and the length of straight a part of channel length. R�i and
R�o are the inside radius and the outside radius. Here, the
superscript � denotes the dimensional quantities. Xi repre-
sents the ith part of the system domain. X1 and X3 are the
straight parts and X2 is the curved part. The boundaries are
denoted by Ci. C1 and C3 are the inlet and the outlet bound-
aries. C21, C22 and C23 are the parts of the boundary at the
inside wall. C41, C42, and C43 are for the outside wall. Vec-
tors n and t are the outward normal vector and the tangen-
tial vector.

In this work, the physical properties are constant except
for the zeta potential distributions. The microchannel walls
are impermeable and nonconducting. In a microchannel,
the channel dimension is much larger than the Debye
length. The Debye layer can be ignored and the charge den-
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sity outside the Debye layer can be assumed to be zero.
Therefore, the dimensionless governing equation for the
electric potential is the Laplace equation

r2/ ¼ 0 ð1Þ
with the boundary conditions

n � r/ ¼ 1 on C1; / ¼ 1 on C3 ð2Þ
n � r/ ¼ 0 on C2i and C4i; i ¼ 1–3 ð3Þ
where the length scale Lc ¼ W �, the electric field scale
Ec ¼ E�inlet and the electric potential scale /c ¼ /�outlet are
used as the characteristic scales. In the above, the inlet
boundary condition is defined by the strength of the electric
field and the outlet boundary condition is from the condi-
tion of the reference potential.

For the EOF in a microchannel, we can assume that
inertial effect is negligible because the fluid velocity is slow
and the length scale is also quite small. Therefore, the
dimensionless governing equations for the flow field are
the continuity equation and the Stokes equation

r � u ¼ 0 ð4Þ
r2u�rp ¼ 0 ð5Þ

with the boundary conditions

u � n ¼ �1; u � t ¼ 0 on C1 ð6Þ
u � n ¼ 0; u � t ¼ fcontðE � tÞ on C2i and C4i; i ¼ 1–3

ð7Þ
n � rðu � nÞ ¼ 0; u � t ¼ 0 on C3 ð8Þ
where the zeta potential scale fc ¼j f�wall j and the velocity
scale uc ¼ ��fcEc=l� (Helmholtz–Smoluchowski speed) are
used. For convenience, the normalized zeta potential value
is defined as f ¼ �f�=fc. The boundary conditions for the
flow field are given by the Dirichlet condition at the inlet
and the fully developed condition at the outlet. At the
walls, the boundary conditions for the flow field are given
by the slip condition based on the Helmholtz–Smoluchow-
ski speed. The zeta potential distributions fcont are the con-
trol variables.

For the concentration of the analyte, the transport equa-
tion is defined as

oc
ot
þ u � rc ¼ 1

Pe
r2c ð9Þ

with the boundary conditions

c ¼ 0 on C1; n � rc ¼ 0 on C3 ð10Þ
n � rc ¼ 0 on C2i and C4i; i ¼ 1–3 ð11Þ
and the initial condition

c ¼ 1 in� Ro 6 x 6 �Ri; �2:5 6 y 6 �1:5

c ¼ 0 in other regions

�
at t ¼ 0

ð12Þ
where the time scale tc ¼ Lc=uc and the concentration scale
cc ¼ c�initial are used. Here, Ro ¼ Ri þ 1, the Peclet number
ðPeÞ is ucLc=D�. In this work, we assume that the fluid speed
is about 0.5 mm/s, the channel with is about 100 lm and
the diffusivity is Oð10�9Þ m2=s. Then Pe is Oð50Þ. The nor-
malized straight channel length is fixed with L ¼ 5.

In this work, as a typical value of the Peclet number, we
choose Pe ¼ 50. The same method can be easily applied to
other values of the Peclet number unless it is extremely
high. For the cases of extreme values of Peclet number,
we need to adopt a different numerical scheme for the solu-
tion of the transport equation from the one used here. In
the present work, the central difference scheme is used con-
sidering accuracy and the not-so-high Peclet number.

2.2. Optimization problem for minimum dispersion

In this work, the optimization problem is to find the zeta
potential distributions at the inside and outside walls that
minimize the dispersion. We define the optimization prob-
lem in which we try to find the zeta potential distributions
that minimize the following objective function:

Min: I ¼ ac

Z
X
ð�c2Þjt¼tf

dXþ
Z

Ccont

r2 dC ¼ acIc þ Ir2

ð13Þ

subject to

r � u ¼ 0 ð14Þ
r2u�rp ¼ 0 ð15Þ
oc
ot
þ u � rc� 1

Pe
r2c ¼ 0 ð16Þ

where ac is the positive weighting parameter, X ¼ X1

S
X2S

X3 and Ccont ¼ C21

S
C22

S
C23

S
C41

S
C42

S
C43. Here,

r2 is the norm of velocity difference at the walls defined as

r2 ¼ ðux � uI
xÞ

2 þ ðuy � uI
yÞ

2 ð17Þ

where uI is the velocity vector with no control (i.e., f ¼ 1 at
all walls). At walls, uI ¼ E and u ¼ fE and r2 ¼ ð1� fÞ2E2

represents some degree of control action for the change of
zeta potential.

The first term of the objective function Ic means that
maintaining localized high concentration is a better strat-
egy for dispersion control. For more formal treatment,
we may use the Schwarz inequality for the inner product
and the norms in the function space. If we consider two
functions c and 1(unity), then we have

j hc; 1ij2 6 kck2k1k2 ð18Þ

or
Z

X
cdX

����
����
2

6

Z
X

c2 dX

� � Z
X

1dX

� �
ð19Þ

Since
R

X 1dX ¼ A ¼ area of the domain and 1
A

R
X cdX ¼ �c

¼ average concentration, we haveZ
X

c2 dX P A�c2 ¼ const: ð20Þ
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where the equality holds when c ¼ �c everywhere in X (per-
fect dispersion case). As we can see above, maintaining
localized concentration distribution means that

R
X c2 dX is

maximized and the fact justifies the objective function
adopted in this work.

Other researchers such as Qiao and Aluru [11] adopted
the definition of dispersion based on the product of concen-
tration and the square of the distance from the center of
mass. The definition may be efficiently used for the case
of considering finite number of particles that are not much
dispersed. However, in the present work, that approach has
not been adopted in order to avoid the conceptual difficul-
ties arising for the distance between particles across the U-
turn.

As mentioned before, the second term of the objective
function Ir2 is for minimization of the control range. It is
a necessary term for solving optimization problem to use
the calculus of variations because the variational method
needs an objective function which includes one control var-
iable at least. Therefore, the weighting parameter ac repre-
sents the relative importance of minimizing dispersion to
the amount of the changed zeta potential. In other words,
when ac is very large, it is a result only to minimize the first
term.

The first term of the objective function is changed
depending on how tf is defined. In this work, the final time
tf is defined as the time when the center of mass of analyte
arrives at the standard position. The standard position in
X3 is defined as the y-axis position that is the same as that
for the center of mass of the initial analyte in X1. Therefore,
the final time is a function of the concentration distribution
controlled by the flow field.
3. Optimality conditions

Adopting the method of the Lagrange multiplier, we
introduce the augmented objective function

Ia ¼ I þ Ip þ Iu þ Ic ð21Þ
Here

Ip ¼ hp̂;r � ui ð22Þ
Iu ¼ hû;r2u�rpi ð23Þ

Ic ¼ ĉ;
oc
ot
þ u � rc� 1

Pe
r2c

� �
t

ð24Þ

where p̂, û and ĉ are the Lagrange multipliers which are
introduced as the adjoint variables corresponding to the
state variables of p, u and c, respectively. The inner prod-
ucts are defined as

hA;Bi ¼
Z

X
A � BdX ð25Þ

ha; bi ¼
Z

X
abdX ð26Þ

ha; bit ¼
Z

t

Z
X

abdXdt ð27Þ
From the optimality condition dIa ¼ 0, the Euler–
Lagrange equations and the appropriate natural boundary
conditions are derived. The basic procedure of deriving the
adjoint equations and the natural boundary conditions is
introduced in [29]. The expression of dIa is

dIa ¼ dI þ dIp þ dIu þ dIc ¼ 0 ð28Þ

where

dI ¼ 2ac

Z
X
ð�cdcÞjt¼tf

dXþ
Z

Ccont

ðu� uIÞ � dudC ð29Þ

dIp ¼ hdp̂;r � ui � hdu;rp̂i þ
Z

C
p̂ðdu � nÞdC ð30Þ

dIu ¼ hdû;r2u�rpi þ hdu;r2ûi þ hdp;r � ûi

þ
Z

C
n � ðrduÞ � û�rû � du� udp½ �dC ð31Þ

dIc ¼ dĉ;
oc
ot
þ u � rc� 1

Pe
r2c

� �
t

� dc;
oĉ
ot
þ u � rĉþ 1

Pe
r2ĉ

� �
t

þ hdu; ĉrcit

þ
Z

X
½ðĉdcÞjt¼tf

� ðĉdcÞjt¼0�dX

þ
Z

t

Z
C

n � rĉ
Pe
þ uĉ

� 	
dc� ĉ

Pe
rðdcÞ

� �
dCdt: ð32Þ

In order to make dIa ¼ 0 for all possible variations of the
adjoint variables p̂; û and ĉ in the domain, we recover the
state equations

r � u ¼ 0 ð33Þ
r2u�rp ¼ 0 ð34Þ
oc
ot
þ u � rc� 1

Pe
r2c ¼ 0 ð35Þ

On the other hand, from the terms of the variations of the
state variables p; u and c in the domain, the governing
equations for the adjoint variables (adjoint equations) are
derived as

r � û ¼ 0 ð36Þ

r2û�rp̂ þ
Z

t
ĉrcdt ¼ 0 ð37Þ

oĉ
ot
þ u � rĉþ 1

Pe
r2ĉ ¼ 0 ð38Þ

The unspecified boundary conditions of the slip velocity
and the boundary conditions of the adjoint variables are
derived as the natural boundary conditions from dIa ¼ 0.
The unspecified boundary conditions of the slip velocity
on the wall at which the zeta potential is controlled
ðCcontÞ is

u � t ¼ 1

2
n � rðû � tÞ þ uI � t on Ccont ð39Þ

Therefore, the boundary conditions for state variables are
summarized as
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u � n ¼ �1; u � t ¼ 0 on C1 ð40Þ
u � n ¼ 0; u � t

¼ 1

2
n � rðû � tÞ þ uI � t on C2i and C4i; i ¼ 1–3 ð41Þ

n � rðu � nÞ ¼ 0; u � t ¼ 0 on C3 ð42Þ
c ¼ 0 on C1; n � rc ¼ 0 on C3 ð43Þ
n � rc ¼ 0 on C2i and C4i; i ¼ 1–3 ð44Þ

c ¼ 1 in � Ro 6 x 6 �Ri; �2:5 6 y 6 �1:5

c ¼ 0 in other regions

�
at t ¼ 0

ð45Þ
Here, the control variables fcont are determined from (41)
because the slip velocities at the walls are defined as
u � t ¼ fcontðE � tÞ ¼ fcontðuI � tÞ. The boundary conditions
for the adjoint variables are

û � n ¼ 0; û � t ¼ 0 on all boundaries ð46Þ
ĉ ¼ 0 on C1; n � rĉ ¼ �Peðu � nÞĉ on C3 ð47Þ
n � rĉ ¼ 0 on C2i and C4i; i ¼ 1–3 ð48Þ
ĉ ¼ 2acc at t ¼ tf ð49Þ
From the mathematical view point, the equation of the ad-
joint concentration (38) looks like an ill-posed problem.
However, (38) is a well-posed problem with the backward
time step, because the boundary condition of time is de-
fined at the final time as (49). Even if the equations of
(33)–(38) are well defined, the whole system of equations
is not easy to solve. Because the equations are highly cou-
pled PDEs, we introduce an iterative method with the
relaxation parameter. Since there are no boundary condi-
tions for the pressure p and the adjoint pressure p̂, for con-
venience, we adopt the streamfunction-vorticity method for
solving the equations of the flow and the adjoint flow fields.
The detailed explanation will be given in Section 4.

4. Numerical implementation

4.1. Streamfunction-vorticity method for the flow and the

adjoint flow fields

For the equations of (33,34) and (36,37), there are no
boundary conditions of p and p̂. Therefore, we use the
streamfunction-vorticity formulation method [30] which
eliminates the pressure variable in the Navier–Stokes equa-
tion. Since this method is well described for the flow field,
we simply describe the procedure of the streamfunction-
vorticity method for the flow field and the adjoint flow
field. Applying the curl operator ðr�Þ to (34) and (37),
the equations of the vorticity w and the adjoint vorticity
ŵ are obtained as

r2w ¼ 0 ð50Þ

r2ŵþ
Z

t
rĉ�rcdt ¼ 0 ð51Þ

where
w ¼ r� u ð52Þ
ŵ ¼ r� û ð53Þ

In the 2D problem, w ¼ ð0; 0;w3Þ ¼ ð0; 0;wÞ and ŵ ¼ ð0; 0;
ŵ3Þ ¼ ð0; 0; ŵÞ. The relationships of the streamfunction
with the flow and the adjoint streamfunction with the ad-
joint flow are defined as

ux ¼ �
ow
oy
; uy ¼

ow
ox

ð54Þ

ûx ¼ �
oŵ
oy
; ûy ¼

oŵ
ox

ð55Þ

Since the definitions of (54) and (55), the flow field and the
adjoint flow field automatically satisfy the continuity equa-
tions of the flow and the adjoint flow, (33) and (36). Substi-
tuting (54) and (55) into (52) and (53), the equations of the
streamfunction and the adjoint streamfunction are derived
as

r2w ¼ w ð56Þ
r2ŵ ¼ ŵ ð57Þ

From (40)–(42) and (46), the boundary conditions for w
and ŵ are derived as

w ¼ xþ ð1þ RiÞ; ŵ ¼ 0 on C1 ð58Þ
w ¼ 1; ŵ ¼ 0 on C2i; i ¼ 1–3 ð59Þ
n � rw ¼ 0; ŵ ¼ 0 on C3 ð60Þ
w ¼ 0; ŵ ¼ 0 on C4i; i ¼ 1–3: ð61Þ

The boundary conditions for w and ŵ are given by (52) and
(53). In other words, using w, ŵ and the Dirichlet boundary
conditions of u and û, we calculate the values of the Dirich-
let boundaries for w and ŵ except the boundary condition
of w at C3,

n � rw ¼ 0 on C3: ð62Þ

By solving the equations of (50) and (56), instead of the
continuity equation and the Stokes equation, we can obtain
the solution of the flow field without need of the boundary
conditions of the pressure. The adjoint flow field is also
determined by the equations of (51) and (57).
4.2. Solution procedure

In order to solve the optimality system of Eqs. (50),(51),
(56), (57), (35) and (38), we use the finite-difference method
(FDM). Considering the value of the Peclet number, we
adopted the central difference scheme for the spacewise
derivatives. Since the equations are highly coupled, we
use the iterative scheme with the relaxation parameter
ð� < 1Þ. The algebraic system of each variable is solved
by the alternating directional implicit (ADI) scheme. The
solution procedure is summarized in Fig. 2. The detailed
solution procedure is as follows:



Fig. 2. Flow chart of the solution procedure.
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Step 1: Set uð0Þ, ûð0Þ, i=1.
Step 2: Calculate uðiÞ from (Step 2-1–2-5).
Step 2-1: Set wð0Þ ¼ r � uði�1Þ, j=1.
Step 2-2: Solve (56) for wðjÞ using wðj�1Þ.
Step 2-3: Calculate uðjÞ from (54) using wðjÞ.
Step 2-4: Solve (50) for wðjÞ with the boundaries
defined by uðjÞ.
Step 2-5: Check convergence.
If not converged, go back to Step 2-2 and
j = j + 1.

If converged, uðiÞ ¼ uðjÞ.

Step 3: Calculate and save c at each time step from 0.

Step 3-1: When the analyte arrives at the stan-
dard position, tf is determined and go to Step 4.
Step 4: Calculate ĉ backwardly at each time step from tf

to 0.

Step 4-1: Read c at each time step and evaluateR

trĉ�rcdt.

Step 5: Calculate ûðiÞ from (Step 5-1–5-5).
Step 5-1: Set ŵð0Þ ¼ r � ûði�1Þ, j=1.
Step 5-2: Solve (57) for wðjÞ using wðj�1Þ.
Step 5-3: Calculate ûðjÞ from (55) using ŵðjÞ.
Step 5-4: Solve (51) for ŵðjÞ with the boundaries
defined by ûðjÞ.
Step 5-5: Check convergence.
If not converged, go back to Step 5-2 and
j = j + 1.
If converged, ûðiÞ ¼ ûðjÞ.
Step 6: Update ûðiÞ ¼ ð1� �Þûði�1Þ þ �ûðiÞ
Step 7: Check convergence.

If not converged, go back to Step 2 and i = i + 1.

As discussed in Section 4.1, the flow field and the adjoint
flow field are calculated from (50) and (51) and (56) and
(57). After the final time and the concentration distribution
at the final time are determined in Step 3, the adjoint con-
centration can be solved backwardly from tf . The numeri-
cal value of the integration for

R
trĉ�rcdt are calculated

from the final time to the initial time, because the adjoint
concentration is evaluated from tf to 0. Therefore, we must
save the whole information of the concentration at the all
time steps. The amount of the saving information is quite
large. However, that information is only used in each ith
iteration and removed. Therefore, the required storage
space of saving the massive information is fixed. There
are artificial diffusions of the concentration and the adjoint
concentration because of using the ADI scheme for the
algebraic system of the PDEs discretized by FDM. The
solutions of the concentration and the adjoint concentra-
tion are influenced by the much stronger diffusion then
the diffusion defined by diffusivity. Therefore, the optimal
solutions in the work do not accurately include the effect
of the diffusion defined by the number of diffusivity. In
the procedure, the value of the relaxation parameter is
important. In fact, the iterative method without the relax-
ation parameter (i.e. � ¼ 1) works well when the weighting
parameter ac is small. However, in the optimal problem
cases with large ac, the iterative method without the relax-
ation parameter shows the fluctuated tendency of error.
Due to the fluctuation of error, we introduce the relaxation
parameter. The detailed discussion about the relaxation
parameter and the convergence of error will be given in
the Section 5.

5. Results and discussion

5.1. Preliminary results

Fig. 3 shows the optimal solutions of the the velocity
vectors and the concentration distributions at the final time
tf for ac ¼ 700 when Ri ¼ 1 and Pe ¼ 50. The state vari-
ables (u and cjt¼tf

) are represented in Fig. 3a. The adjoint
variables (û and ĉjt¼0) are in Fig. 3b. In Fig. 3, the contour
plots of the concentration at t ¼ tf (a) and the adjoint con-
centration at t ¼ 0 (b) are shown. As we can see in Fig. 3a,
the optimal zeta potential control results in a successful
concentration distribution at t ¼ tf . The detailed analysis
of the results for various ac values will be given later.
The distribution of ĉ at t ¼ 0 in Fig. 3b can also be
explained. As mentioned before, the adjoint concentration
equation (38) should be solved backwardly. If we define the
backward time is t̂ ¼ tf � t, then the (38) and (49) are chan-
ged to



Fig. 3. Vector and contour plots of the optimal solution when ac ¼ 700 with Ri ¼ 1 and Pe ¼ 50: (a) the flow field and the concentration distribution at the
final time and (b) the adjoint flow field and the adjoint concentration distribution at the initial time.
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oĉ
ôt
þ ð�uÞ � rĉ ¼ 1

Pe
r2ĉ ð63Þ

with

ĉ ¼ 2accjtf at t̂ ¼ 0: ð64Þ

As we can see above, the governing equation of ĉ in terms
of the backward time t̂ is a convective transport equation
with the advection by ð�uÞ and diffusion. Therefore com-
pared with the figure of cjtf

in Fig. 3a ðĉð̂t ¼ 0Þ ¼ ĉðt ¼
tfÞ ¼ 2accðt ¼ tfÞÞ, we can see that ĉð̂t ¼ tfÞ ¼ ĉðt ¼ 0Þ is
advected backwardly by ð�uÞ and it has wider distribution
by diffusion.
5.1.1. Effect of the relaxation parameter
The iterative method with the relaxation parameter

works well for various ac as shown in Fig. 4. Here, the
errors are defined as the maximum value of the absolute
differences of the velocity norm between the values at the
present iteration step and those at the previous step. How-
ever, the relaxation parameter should be well chosen to
obtain the optimal solution effectively. In this work, the
relaxation parameters are determined by

ac� ¼ j ð65Þ

where j is a constant. At first, j is a priori determined as
j ¼ 6 when ac ¼ 12 with Ri ¼ 1 and Pe ¼ 50. For other



Fig. 4. Numerical errors vs. iteration number for various ac when Ri ¼ 1
and Pe ¼ 50.
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ac cases, the relaxation parameters are determined from
(65) with j ¼ 6. We checked the validity of (65) until
ac ¼ 700 and observed that it worked well.
5.1.2. Validation of optimal solution

Let us check if the optimization works properly before
discussing the details of the optimal solutions. For valida-
tion of the optimal solution, the two kinds of the view
points are used. One is to use the calculated values of Ic

and I r2 of the objective function (Eq. (13)) for various ac.
The other is comparison between the optimal solution from
this work and the result from the work on optimization of
localized step-wise zeta potentials [12].

For the given ac, the objective function is determined by
Ic and Ir2 in Eq. (13). For various ac, the values of Ic, I r2 are
listed in Table 1. As shown in Table 1, the measure of dis-
persion Ic decreases and the control range I r2 increases as ac

increases. The dispersion induced by a turn is more sup-
pressed and the variation of the zeta potential distribution
from the no control state becomes larger.

Now, for each ac, we consider the following artificial
objective function

I 0ðacÞ ¼ a0cIcðacÞ þ Ir2ðacÞ ð66Þ
Table 1
The values of Ic, Ir2 of Eq. (13) for the optimal solution with ac when
Ri ¼ 1 and Pe ¼ 50

Ic Ir2

ac ¼ 1 �2:0087� 10�1 1:4215� 10�3

ac ¼ 2 �2:0424� 10�1 5:9210� 10�3

ac ¼ 3 �2:0781� 10�1 1:3995� 10�2

ac ¼ 500 �4:2623� 10�1 3.7924
ac ¼ 600 �4:2627� 10�1 3.8170
ac ¼ 700 �4:2630� 10�1 3.8353
where a0c is a weighting parameter and IcðacÞ and I r2ðacÞ are
the values evaluated by using the optimal solution for the
weighting function ac. Therefore, I 0ðacÞ is the value of the
objective function for the weighting parameter a0c when
the objective function is evaluated by using the zeta poten-
tial distributions that are optimal for the weighting param-
eter ac. In each row of Table 2, for a fixed a0c, the values of
objective function are listed for various ac. As we can see
the artificial objective function attains minimum when
ac ¼ a0c. If the column index ac is not the same as the row
index a0cðac 6¼ a0cÞ, IcðacÞ and Ir2ðacÞ are not the values eval-
uated with the optimal solution for the given a0c. Therefore,
the artificial objective function value cannot be smaller
than the objective function for the ac ¼ a0c case. The opti-
mization method of the present work does not show any
contradictory result as can be seen in Table 2, for both
the cases with the small variations of a0c ¼ 1; 2; 3 and the
cases with the optimal solutions which are asymptotically
converged ða0c ¼ 500; 600; 700Þ. In other words, the numer-
ical scheme has passed a necessary test.

Second method for validation is to compare the optimal
solution with the known result. According to Woo [12], the
optimal flow patterns are well predictable when the inner
radius of a turn Ri is very large. When Ri is large, the veloc-
ity of the predicted flow for minimum dispersion is propor-
tional to the radius of the position and can be written by

upre � t ¼ 2r
2Ri þ 1

; upre � n ¼ 0 in X2 ð67Þ

where r is the radius of the position. In this work, the pre-
dicted zeta potential distributions at the inside and the out-
side walls are evaluated from the Helmholtz–
Smoluchowski speed described in (7) with the known elec-
tric field. Thus, the predicted zeta potential distributions at
the inside and outside walls are given by

fpre
in ¼

upre
in � t
E � t on C2 ð68Þ

fpre
out ¼

upre
out � t
E � t on C4 ð69Þ

where upre
in � t ¼ 2Ri=ð2Ri þ 1Þ and upre

out � t ¼ 2ðRi þ 1Þ=
ð2Ri þ 1Þ.

In Fig. 5, the optimal zeta potential distributions at the
inside and outsize walls with ac ¼ 700; 1000 and the pre-
dicted zeta potential distributions are shown when Ri ¼ 3
and Pe ¼ 50. For convenience, to represent the zeta poten-
tial distributions at the inside and outside walls on the same
x-axis, the values are projected on the U-shaped line with
fixed radius Ri ¼ 1. And the x-axis represents the distance
along the center position on the U-shaped line. Therefore,
the region of distances from �p=2 to p=2 is X2. In X2, the
optimal zeta potential distributions obtained from this
work agree well with the predicted zeta potential distribu-
tions as shown in Fig. 5.

Compared with the model prediction, the optimal solu-
tions have a different tendency of zeta potential distributions
in the region between about �3.0 and �4.6. Actually that



Table 2
The values of I 0 for a0c ðI 0ðacÞ ¼ a0cIcðacÞ þ Ir2 ðacÞÞ when Ri ¼ 1 and Pe ¼ 50

I 0ð1Þ I 0ð2Þ I 0ð3Þ I 0ð500Þ I 0ð600Þ I 0ð700Þ
a0c ¼ 1 �0.1994 �0.1983 �0.1938 3.3662 3.3907 3.4090
a0c ¼ 2 �0.4003 �0.4026 �0.4016 2.9399 2.9644 2.9827
a0c ¼ 3 �0.6012 �0.6068 �0.6094 2.5137 2.5382 2.5564
a0c ¼ 500 �100.4343 �102.1126 �103.8934 �209.3228 �209.3201 �209.3153
a0c ¼ 600 �120.5214 �122.5363 �124.6749 �251.9459 �251.9475 �251.9455
a0c ¼ 700 �140.6086 �142.9600 �145.4564 �294.5689 �294.5749 �294.5756

Fig. 5. Comparison the zeta potential distributions of the optimal
solutions for ac ¼ 700; 1000 with those of the model prediction when
Ri ¼ 3 and Pe ¼ 50.

Fig. 6. The contour plots in X1 of concentration for the optimal solution
when ac ¼ 1000 with Ri ¼ 3 and Pe ¼ 50: (a) at t ¼ 0 and (b) at t ¼ 1.
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region is almost the same with the initially specified non-zero
concentration region (from �p=2� 2:5 to �p=2� 1:5 on x-
axis of Fig. 5). The bump in the numerically obtained opti-
mal zeta potential distributions in that region is strongly
related with the initial concentration distribution. As shown
Fig. 6, the initial concentration distribution is changed by
the optimal zeta potential distributions in that region. The
rectangular shape of the concentration distribution is chan-
ged to the trapezoid shape (like Fig. 6b). This trapezoid-
shaped distribution causes less dispersion when the analyte
is transported through the curved region ðX2Þ because the
optimal flow is slow near the inside wall.
Fig. 7. The effect of the weighting parameter ðacÞ on the optimal zeta
potential distributions at the inside and outside walls when Ri ¼ 1 and
Pe ¼ 50.
5.2. Effect of the weighting parameter ðacÞ

In Fig. 7, the optimal zeta potential distributions at the
inside and outside walls for various ac are shown when
Ri ¼ 1 and Pe ¼ 50. The optimal zeta potential distributions
at the inside wall are denoted by the lines with symbols and
the optimal zeta potential distributions at the outside wall
are denoted by the lines without symbols. When ac gets lar-
ger, the value of the inside zeta potential in X2 becomes
smaller and the value of outside zeta potential in X2

becomes larger. The optimal zeta potential distributions
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at the inside and outside walls have a tendency of converg-
ing to the asymptotic distributions when ac is extremely
large. Therefore, we can estimate the optimal zeta potential
distributions without considering the range of the zeta
potential from Fig. 7.

As shown in Fig. 8, the dispersion is drastically reduced
by the control of the zeta potential distributions at the
walls when Ri ¼ 1 and Pe ¼ 50. For the case of no control,
Fig. 8a shows the velocity vector and the concentration dis-
tribution at the initial and final times. In Fig. 8b, the veloc-
ity vector and the concentration distribution for ac ¼ 700
are shown. For large ac, the dispersion is dramatically
reduced. In Fig. 8, the reason for the tendency of the opti-
Fig. 8. Velocity vector plots and the contour plots of concentration at t ¼
(a) ac ¼ 0 (no control) and (b) ac ¼ 700.
mal zeta potential distributions at the walls can be found.
In Fig. 8a of the no control case ðac ¼ 0Þ, the race track
effect is caused by the faster velocity near the inside wall
than near the outside wall. However, the race track effect
is reduced by the decreased velocity near the inside wall
of a turn and the increased velocity near the outside wall.
In Fig. 8b for ac ¼ 700, we can see that the race track effect
is minimized by the properly increased zeta potential at the
outside wall in X2 and the properly decreased zeta potential
at the inside wall in X2.

As previously mentioned, the final time of the objective
function is to be determined during the optimization proce-
dure. As shown in Table 3, the final time decreases as ac
tf (with box-shaped initial distribution in X1) when Ri ¼ 1 and Pe ¼ 50:



Table 3
The final time for ac when Ri ¼ 1 and Pe ¼ 50

ac ¼ 0 ac ¼ 10 ac ¼ 20 ac ¼ 50 ac ¼ 100 ac ¼ 700

Final time
ðtf Þ

9.000 8.822 8.754 8.751 8.751 8.751

Fig. 9. Schematic of the microchannel system with continuously con-
trolled zeta potential by the external voltage.
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increases. However, the final time is not changed after
ac > 20. This means that, even if the zeta potential distribu-
tions change, the average velocity does not change. As ac

increases, the dispersion is reduced but the position of cen-
ter of mass does not change anymore.

The optimal solutions obtained in this work are
expected to provide valuable information of the optimal
control for minimal dispersion and an insight for the design
of zeta potential control systems. In addition, the method-
ology of this work may find further applications for the
design of the microchannel system, in which the flow field
is to be controlled for various purposes as in the micro-
total-analysis-systems (lTAS). One possible example is
the mixing problem in an microchannel and some results
for the problem are available in [12].

The control system proposed in this work may be fabri-
cated as shown in Fig. 9. Different voltages are supplied to
each external electrode to change the zeta potential values
at the walls continuously. Application of the electric poten-
tial to the external electrode was proved to control the zeta
potential value by several previous researchers [9,10,31–33].
In addition, other zeta potential control methods – for
example, the patterned surface charge modification [34]
and the laser modification of the microchannel surface
[35] – are also applicable.
6. Conclusions

A novel type problem is considered for the optimal
boundary control with the state equations of the steady flow
equations and the unsteady transport equation. Specifically,
optimization of the zeta potential distributions at the walls
is performed for minimal dispersion in an electroosmotic
microchannel. Using the variational approach, we solve
the optimal problem. Based on the calculus of variations
and the method of Lagrange multiplier, the Euler–Lagrange
equations are derived in the form of coupled PDEs. In order
to solve the flow equations and the adjoint flow equations,
the streamfunction-vorticity method is used to solve the
equations without need of the pressure boundary condi-
tions. The iterative method with relaxation parameter is
also adopted for stable convergence.

When the optimal zeta potential distributions at both
walls are used, the dispersion is marvelously diminished.
It is the result of the dramatically reduced race track effect
in X2 by the rearranged flow pattern, which is controlled by
the optimal zeta potential distributions at the walls. The
optimal zeta potential distributions without considering
the control range can also be estimated. The optimal zeta
potential distributions at the walls have a tendency of con-
verging to the asymptotic distributions when ac is extre-
mely large. The results of the optimal solutions are
expected to provide an insight for the design of zeta poten-
tial control systems.
Acknowledgements

This research has been supported by the BK21 program
of the Ministry of Education of Korea, by the Grant R01-
2004-000-10838-0 from KOSEF and by Center for Ultram-
icrochemical Process Systems (CUPS) sponsored by
KOSEF.
References

[1] E. Zubritsky, Taming turns in micro-channels, Anal. Chem. 72 (2000)
687A.

[2] C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Dispersion sources for
compact geometries on microchips, Anal. Chem. 70 (1998) 3781,
doi:10.1021/ac9804487.

[3] C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Microchip devices for
high-efficiency separations, Anal. Chem. 72 (2000) 5814, doi:10.1021/
ac0006268.

[4] B.M. Paegel, L.D. Hutt, P.C. Simpson, R.A. Mathies, Turn geometry
for minimizing band broadening in microfabricated capillary electro-
phoresis channels, Anal. Chem. 72 (2000) 3030, doi:10.1021/
ac000054r.

[5] S.K. Griffiths, R.H. Nilson, Band spreading in two-dimensional
microchannel turns for electrokinetic species transport, Anal. Chem.
72 (2000) 5473, doi:10.1021/ac000595g.

[6] S.K. Griffiths, R.H. Nilson, Design and analysis of folded channels
for chip-based separations, Anal. Chem. 74 (2002) 2960, doi:10.1021/
ac011218m.

[7] S.K. Griffiths, R.H. Nilson, Low-dispersion turns and junctions for
microchannel systems, Anal. Chem. 73 (2001) 272, doi:10.1021/
ac000936q.

http://dx.doi.org/10.1021/ac9804487
http://dx.doi.org/10.1021/ac0006268
http://dx.doi.org/10.1021/ac0006268
http://dx.doi.org/10.1021/ac000054r
http://dx.doi.org/10.1021/ac000054r
http://dx.doi.org/10.1021/ac000595g
http://dx.doi.org/10.1021/ac011218m
http://dx.doi.org/10.1021/ac011218m
http://dx.doi.org/10.1021/ac000936q
http://dx.doi.org/10.1021/ac000936q


4562 H.S. Woo et al. / International Journal of Heat and Mass Transfer 51 (2008) 4551–4562
[8] J.I. Molho, A.E. Herr, B.P. Mosier, J.G. Santiago, T.W. Kenny, R.A.
Brennen, G.B. Gordon, B. Mohammadi, Optimization of turn
geometries for microchip electrophoresis, Anal. Chem. 73 (2001)
1350, doi:10.1021/ac001127+.

[9] C.-Y. Lee, C.-H. Lin, L.-M. Fu, Band spreading control in electro-
phoresis microchips by localized zeta-potential variation using field-
effect, Analyst 129 (2004) 931, doi:10.1039/b407627n.

[10] G.-B. Lee, L.-M. Fu, C.-H. Lin, C.-Y. Lee, R.-J. Yang, Dispersion
control in microfluidic chips by localized zeta potential variation using the
field effect, Electrophoresis 25 (2004) 1879, doi:10.1002/elps.200305880.

[11] R. Qiao, N.R. Aluru, Dispersion control in nano-channel systems by
localized f-potential variations, Sensors Actuat. A 104 (2003) 268,
doi:10.1016/d0924-424(03)00029-3.

[12] H.S. Woo, Ph.D. Dissertation, Pohang University of Science and
Technology, Korea, 2006.

[13] J.L. Lions, in: S.K. Mitter (Ed.), Optimal Control of Systems Governed
by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

[14] R. Glowinski, J.L. Lions, Exact and approximate controllability for
distributed parameter systems, Acta Numer. (1994).

[15] M. Gunzburger, Adjoint equation-based methods for control prob-
lems in incompressible viscous flows, Flow Turbul. Combust. 65
(2000) 249, doi:10.1023/A:1011455900396.

[16] O. Ghattas, J.-H. Bark, Optimal control of two- and three-
dimensional incompressible Navier–Stokes flows, J. Comput. Phys.
136 (1997) 231, doi:10.1006/jcph.1997.5744.

[17] M. Berggren, Numerical solution of a flow-control problem: vorticity
reduction by dynamic boundary action, SIAM J. Sci. Comput. 19
(1998) 829, doi:10.1137/S1064827595294678.

[18] M.D. Gunzburger, S. Manservisi, Analysis and approximation of the
velocity tracking problem for Navier–Stokes flows with distributed
control, SIAM J. Numer. Anal. 37 (2000) 1481, doi:10.1137/
S0036142997329414.

[19] J.-W. He, R. Glowinski, R. Metcalfe, A. Nordlander, J. Periaux,
Active control, active control and drag optimization for flow past a
circular cylinder: I. Oscillatory cylinder rotation, J. Comput. Phys.
163 (2000) 83, doi:10.1006/jcph.2000.6556.

[20] C. Homescu, I.M. Navon, Z. Li, Suppression of vortex shedding for
flow around a circular cylinder using optimal control, Int. J. Numer.
Methods Fluids 38 (2002) 43, doi:10.1002/fld.203.

[21] H.M. Park, W.J. Lee, J.S. Chung, Boundary optimal control of the
Navier–Stokes equations – a numerical approach, Int. J. Eng. Sci. 40
(2002) 2119, doi:10.1016/S0020-72202)00136-2.

[22] M. Hintermüller, K. Kunisch, Y. Spasov, S. Volkwein, Dynamical
systems-based optimal control of incompressible fluids, Int. J. Numer.
Methods Fluids 46 (2004) 345, doi:10.1002/fld.725.
[23] M. Hinze, K. Kuisch, Second order methods for boundary control of
the instationary Navier–Stokes system, Z. Angew. Math. Mech. 84
(2004) 171, doi:10.1002/zamm.200310094.

[24] L.S. Hou, S.S. Ravindran, Computations of boundary optimal
control problems for an electrically conducting fluid, J. Comput.
Phys. 128 (1996) 319, doi:10.1006/jcph.1996.0213.

[25] G.V. Alekseev, Solvability of control problems for stationary
equations of magnetohydrodynamics of a viscous fluid, Siberian
Math. J. 45 (2004) 197.

[26] R. Sampath, N. Zabaras, A functional optimization approach to
an inverse magneto-convection problem, Comput. Methods Appl.
Mech. Eng. 190 (2001) 2063, doi:10.1016/S0045-782(00)
00222-X.

[27] S.S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, S. Ulbrich,
Optimal control of unsteady compressible viscous flows, Int. J.
Numer. Mech. Fluids 40 (2002) 1401, doi:10.1002/fld.420.

[28] D.R. Reyes, D. Iossifidis, R.-A. Auroux, A. Manz, Micro total
analysis systems. 1. Introduction, theory, and technology, Anal.
Chem. 74 (2002) 2623, doi:10.1021/ac0202435.

[29] J.H. Jeong, I.S. Kang, Optimization of the crystal surface tempera-
ture distribution in the single-crystal growth process by the Czo-
chralski method, J. Comput. Phys. 177 (2002) 284, doi:10.1006/
jcph.2002.7011.

[30] L.G. Leal, Laminar Flow and Convective Transport Processes:
Scaling Principles and Asymptotic Analysis, Butterworth-Heine-
mann, Masssachusetts, 1992.

[31] R.B.M. Schasfoort, S. Schlautmann, J. Hendrikse, A. van den Berg,
Field-effect flow control for microfabricated fluidic networks, Science
286 (1999) 942, doi:10.1126/science.286.5441.942.

[32] M.A. Hayes, Extension of external voltage control of electroosmosis
to high-pH buffers, Anal. Chem. 71 (1999) 3793, doi:10.1021/
ac990301v.

[33] C.S. Lee, D. McManigill, C.-T. Wu, B. Patel, Factors affecting direct
control of electroosmosis using an external electric field in capil-
lary electrophoresis, Anal. Chem. 63 (1991) 1519, doi:10.1021/
ac00015a005.

[34] A.D. Stroock, M. Weck, D.T. Chiu, W.T.S. Huck, P.J.A. Kenis, R.F.
Ismagilov, G.M. Whitesides, Patterning electro-osmotic flow with
patterned surface charge, Phys. Rev. Lett. 84 (2000) 3314, doi:10.1103
/PhysRevLett.84.3314.

[35] T.J. Johnson, D. Ross, M. Gaitan, L.E. Locascio, Laser modification
of preformed polymer microchannels: application to reduce band
broadening around turns subject to electrokinetic flow, Anal. Chem.
73 (2001) 3656, doi:10.1021/ac010269g.

http://dx.doi.org/10.1021/ac001127+
http://dx.doi.org/10.1039/b407627n
http://dx.doi.org/10.1002/elps.200305880
http://dx.doi.org/10.1016/d0924-424(03)00029-3
http://dx.doi.org/10.1023/A:1011455900396
http://dx.doi.org/10.1006/jcph.1997.5744
http://dx.doi.org/10.1137/S1064827595294678
http://dx.doi.org/10.1137/S0036142997329414
http://dx.doi.org/10.1137/S0036142997329414
http://dx.doi.org/10.1006/jcph.2000.6556
http://dx.doi.org/10.1002/fld.203
http://dx.doi.org/10.1016/S0020-72202)00136-2
http://dx.doi.org/10.1002/fld.725
http://dx.doi.org/10.1002/zamm.200310094
http://dx.doi.org/10.1006/jcph.1996.0213
http://dx.doi.org/10.1016/S0045-782(00)00222-X
http://dx.doi.org/10.1016/S0045-782(00)00222-X
http://dx.doi.org/10.1002/fld.420
http://dx.doi.org/10.1021/ac0202435
http://dx.doi.org/10.1006/jcph.2002.7011
http://dx.doi.org/10.1006/jcph.2002.7011
http://dx.doi.org/10.1126/science.286.5441.942
http://dx.doi.org/10.1021/ac990301v
http://dx.doi.org/10.1021/ac990301v
http://dx.doi.org/10.1021/ac00015a005
http://dx.doi.org/10.1021/ac00015a005
http://dx.doi.org/10.1103/PhysRevLett.84.3314
http://dx.doi.org/10.1103/PhysRevLett.84.3314
http://dx.doi.org/10.1021/ac010269g

	Optimization of zeta potential distributions for minimal dispersion in an electroosmotic microchannel
	Introduction
	Problem statement
	Governing equations in an electroosmotic microchannel
	Optimization problem for minimum dispersion

	Optimality conditions
	Numerical implementation
	Streamfunction-vorticity method for the flow and the adjoint flow fields
	Solution procedure

	Results and discussion
	Preliminary results
	Effect of the relaxation parameter
	Validation of optimal solution

	Effect of the weighting parameter ({\alpha}_{c})

	Conclusions
	Acknowledgements
	References


